19 research outputs found

    THE APPLICATION OF FRICTION STIR PROCESSING TO THE FABRICATION OF MAGNESIUM-BASED FOAMS

    Get PDF
    In the present paper, friction stir processing (FSP) is used to fabricate magnesium-based nanocomposite foams. The effects of the number of FSP passes, TiH2 to Al2O3 weight ratio, and foaming temperature; on the pore distribution and porosity are described. The results indicate that a minimum TiH2 to Al2O3 weight ratio is necessary to provide the best pore distribution and porosity. Closed-cell porous magnesium with a porosity of about 17.5% was successfully fabricated using 4-pass FSP at 800 rpm, by adding 5 mass% TiH2 and 3.5 mass% Al2O3; at a holding temperature of 858 K, and a holding time of 45 min.111Ysciescopu

    Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors

    Get PDF
    ArticleIn order to improve the anaerobic fermentation of oil refinery wastewater (ORWW) via an appropriate nutrients pool for microbial and buffer capacity growth, a study was carried out on related anaerobic co-digestion (AcoD) with a rich organic carbon source, namely chicken manure (CM). The kinetic parameters were investigated (including cumulative biogas production, bio-methane content, retention time, and soluble chemical oxygen demand stabilisation rate) of batch AcoD experiments related to six ORWW:CM-ratio treatments (5:0, 4:1, 3:2, 2:3, 1:4, and 0:5) under mesophilic conditions. The highest soluble chemical oxygen demand removal rate was obtained for the 4:1-ratio treatment. However, the highest biogas production and bio-methane contents were achieved for the 1:4-ratio treatment. When taking into consideration the highest oil refinery wastewater portion in the AcoD mixtures and the statistical test results (LSD0.05) for the kinetic parameters, it can be seen that the 4:1-ratio treatment provided the maximum biogas production levels

    The Application of Friction Stir Processing to the Fabrication of Magnesium-Based Foams

    No full text
    In the present paper, friction stir processing (FSP) is used to fabricate magnesium-based nanocomposite foams. The effects of the number of FSP passes, TiH2 to Al2O3 weight ratio, and foaming temperature; on the pore distribution and porosity are described. The results indicate that a minimum TiH2 to Al2O3 weight ratio is necessary to provide the best pore distribution and porosity. Closed-cell porous magnesium with a porosity of about 17.5% was successfully fabricated using 4-pass FSP at 800 rpm, by adding 5 mass% TiH2 and 3.5 mass% Al2O3; at a holding temperature of 858 K, and a holding time of 45 min

    The Application of Friction Stir Processing to the Fabrication of Magnesium-Based Foams

    No full text
    In the present paper, friction stir processing (FSP) is used to fabricate magnesium-based nanocomposite foams. The effects of the number of FSP passes, TiH2 to Al2O3 weight ratio, and foaming temperature; on the pore distribution and porosity are described. The results indicate that a minimum TiH2 to Al2O3 weight ratio is necessary to provide the best pore distribution and porosity. Closed-cell porous magnesium with a porosity of about 17.5% was successfully fabricated using 4-pass FSP at 800 rpm, by adding 5 mass% TiH2 and 3.5 mass% Al2O3; at a holding temperature of 858 K, and a holding time of 45 min
    corecore